
DEVELOPMENT GUIDE







HOP Ubiquitous S.L.

www.hopu.eu

Luis Buñuel 6
30562
Ceutí, Murcia
Spain



Index

Homard API REST______________________________________ 2
Homard RESTFul API Examples_________________________ 6
URL Manager__________________________________________ 15
URL Manager RESTFul API_ ___________________________ 16
URL Manager RESTFul API Examples__________________ 16
FIWARE Integration____________________________________ 19
Orion Context Broker NGSI RESTFul API_ ______________ 22
ANNEX 1: OMA LwM2M_ ______________________________ 52



DEVELOPMENT GUIDE

2

Homard API REST

Homard offers in top of the OMA LwM2M1 server a 
RESTFul services such as mechanism to communicate 
with the OMA LwM2M server. This HTTP/HTTPS API 
RESTFul allows users to manage connected devices 
connected to the server.

Homard shows connected devices, and manages each 
of them. Inherit from OMA, the devices expose a set 
of objects/resources, which can contain one or more 
instances, and each instance, contains the final resources. 
Some objects allow multiple instances (such as a Digital 
I/O Object, which represents the different digital inputs 
and outputs from the Smart Spot, which can be used to 
control relays, read external added digital sensors etc.) 
and others only one instance (such as Device Object). 
Numbers are used to identify the tuple (Object ID / 
Instance ID / Resource ID). 

There are two API types: Synchronous and Asynchronous:
•	 Synchronous API provides the data as part of the 

reply to a request in near-real time; it is used mainly 
for data which is available in Homard platform 

internally. Therefore, non-external delays are 
introduced and a very fast reply can be offered. 

•	 Asynchronous API is required mainly for the data 
coming from the sensors (i.e. Smart Spot); since the 
value will be available when the Smart Spot replies to 
the request to Homard; delays can be introduced due 
to issues such as communication latency (GPRS, WiFi 
etc. latency), sensors reading time (specially sensors 
such as air quality which includes a processing time 
of few seconds), and finally due to duty cycle from 
the Smart Spot in order to optimize energy (battery or 
solar panels powered). For that reason, Asynchronous 
API will requires a callback address to inform when 
the value is available.

Information returned by the API is encapsulated 
into a JSON data structure, since is the best way to 
communicate with high level applications (commonly 
developed in Java, JavaScript and Android).

More info in: https://homard.hopu.eu/indexPage/wiki.html

HTTP Path Method Description Result

/api/rest GET Returns all OMA clients connected to HOMARD [{client1},... 
{clientN}]

/api/rest/{endpoint_id} GET Returns the the client description for a {endpoint_id} {client}
/api/rest/{endpoint_id} /
{resource} ?proto={https|http} 
&cburl={DESTINATION_URL}

GET Returns resource {resource} from client {endpoint_id} to 
destination callback URL

[{resource1},...
{resourceN}]

/api/rest/{endpoint_id} /
{resource}?proto={http|https} 
&cburl={DESTINATION_URL}

PUT
Changes value of the resource {resource} on client 
{endpoint_id}. Content type need to be application/JSON 
and in the request body {“id”: 2, “value”: new_value}

/api/rest/{endpoint_id} / 
{resource}/co (Requires POST 
JSON payload)

POST

Sets observe on the resource {resource} and, when the 
resource value is between ‘cbmin’ and ‘cbmax’, posts its 
value on ‘URL’. Note that if cbmin and cbmax are omitted 
then all values will be tracked.

/api/rest/{endpoint_id} /
{resource} /observe DELETE Stops the monitoring on resource {resource}

1. OMA LwM2M protocol: Annex 1 



3

SMART SPOT

There are two API types synchronous and asynchronous, 
on one hand it is synchronous API, that corresponds 
with Server request such as get the client list, get a client 
specific data or list the observes set on a device. On the 
other hand it is device request. The device requests are 
launched on background, this means that the response 

will send to a callback URL defined by the client. This API 
requires the HTTP basic authentication using a Homard 
account.
	
The following diagram shows the differences between 
synchronous and asynchronous API. 

This subsection will present the synchronous API and an example. The available synchronous API resources are as 
follows:

HTTP Method Path Description

GET /api/rest/ Lists all connected clients with their current data
GET /api/rest/{endpoint_id} Get specific connected client data

GET /api/rest /cached /{endpoint_id} /
{resource} Read the resource cached value (last value)

GET /api/rest/{endpoint_id}/co List client observes

POST /api/rest /{endpoint_id} /
{resource} /observe Observes the selected resource and updates the internal cache.

DELETE /api/rest/{endpoint_id} /
{resource_path} /observe Removes selected client observer

DELETE /api/rest/{endpoint_id} /
{resource_path} /co /{coID Removes selected client composite observer

API-RESTFul

User HTTP Client

User HTTP ClientUser Callback 
Client Server

Synchronous request

Asynchronous request

Synchronous response

Asynchronous response

Homard

Homard



DEVELOPMENT GUIDE

4

Synchronous APIs are for requests which are directly resolved by Homard Server. Thereby, we get the last values cached 
on the server directly, without any delay. At this way, Homard can be seen as a data broker.

This subsection present the asynchronous API and an execution example. The available asynchronous API resources 
are as follows:

The API is very useful in special for applications that can not setup a HTTP server in its architecture. This synchronous 
API can be outdated, to solve it, the user can enable a simple observer, which constantly updates the resource. In order 
to create an internal observer to maintain the value updated for a specific resource is as follows:

HTTP Method Path Parameters Description

GET /api/rest /cached /{endpoint_id} 
/{resource} None Read the resource cached value

HTTP Method Path Parameters Description

POST /api/rest /{endpoint_id} /
{resource} /observe None Observes the selected resource and 

updates the internal cache

HTTP Method Path Parameters Description

GET /api/rest /{endpoint_id} /
{resource}

cburl: Destination 
callback url
proto: Destination 
callback url protocol

Read the value and returns it to the 
destination callback url

PUT /api/rest /{endpoint_id} /
{resource}

cburl: Destination 
callback url
proto: Destination 
callback url protocol

Write the value on resource and 
returns the status to callback url

Cached Synchronous RESTFul API

Asynchronous RESTFul API



5

SMART SPOT

Homard offers in top of the OMA LwM2M server a 
RESTFul services such as mechanism to communicate 
with the OMA LwM2M server. This HTTP/HTTPS RESTFul 
API allow users to query the stored information such as 

temperature and humidity. In addition, sensor status and 
maintenance parameters can be queried in order to know 
if there are any problem with network connectivity.

Historical Data RESTFul API

HTTP Path Method Description Result

/api/hist GET Returns historic of OMA clients 
connected to HOMARD

[ { “name”: “HOPf4b85eab98de”, 
“cn”: “HopCore2” }, { “name”: 
“HOPf4b85eab98d6”, “cn”: “HopCore9” } ]

/api/hist/{endpoint_id} 
[?from={timestamp}} 
[&to={timestamp}] 
[&limit={max_records}] 
[&page={limited_page_
requested}]

GET Returns all historic values of 
{enpoint_id} device.

[ { “eid”: “HOPf4b85eab98de”, 
“temperature”: 27.36767578125, 
“humidity”: 45.654815673828125, 
“date”: “Jun 21, 2016 2:10:36 PM” }, ... ]

/api/hist/{endpoint_id} /
temp [?from={timestamp}] 
[&to={timestamp}] 
[&limit={max_records}] 
[&page={limited_page_
requested}]

GET Returns temperature historic 
values of {enpoint_id} device.

{ values: [ 27.36767578125, 
27.96767578125, ... ], dates:[ “Jun 21, 
2016 2:10:36 PM”, “Jun 21, 2016 2:10:37 
PM”, “Jun 21, 2016 2:10:48 PM”, .... ] }

/api/hist/{endpoint_id} /
hum [?from={timestamp}] 
[&to={timestamp}] 
[&limit={max_records}] 
[&page={limited_page_
requested}]

GET Returns humidity historic values 
of {enpoint_id} device.

{ values: [ 27.36767578125, 
27.96767578125, ... ], dates:[ “Jun 21, 
2016 2:10:36 PM”, “Jun 21, 2016 2:10:37 
PM”, “Jun 21, 2016 2:10:48 PM”, .... ] }

/api/hist/events /{endpoint_
id}/ [?from={timestamp}] 
[&to={timestamp}] 
[&limit={max_records}] 
[&page={limited_page_
requested}]

GET
Returns device events such as 
when {enpoint_id} was registered, 
updated or deregistered.

[ { “name”: “HOPf4b85eab98de”, 
“event”: “REGISTRATION”, “ts”: “Jun 
21, 2016 2:08:09 PM” }, { “name”: 
“HOPf4b85eab98de”, “event”: 
“UPDATED”, “ts”: “Jun 21, 2016 2:08:56 
PM” }, ... ]

/api/hist/events/
recount /{endpoint_id}/ 
[?from={timestamp}] 
[&to={timestamp}]

GET Returns a count of {enpoint_id} 
events.

[ { “count”: 2, “event”: “DEREGISTRATION” 
}, { “count”: 4, “event”: “REGISTRATION” }, 
{ “count”: 841, “event”: “UPDATED” } ]



DEVELOPMENT GUIDE

6

[
   {
      “endpoint”:”HOP-Sensor-Debug”,
      “registrationId”:”MTKt5ejSeu”,
      “registrationDate”:”2015-02-16T01:06:27+01:00”,
      “address”:”/127.0.0.1:54604”,
      “lwM2MmVersion”:”1.0”,
      “lifetime”:120,
      “bindingMode”:”UQ”,
      “rootPath”:”/”,
      “objectLinks”:[
         {
            “url”:”/1/0”,
            “attributes”:{

            },
            “objectId”:1,
            “objectInstanceId”:0
         },
         {
            “url”:”/3”,
            “attributes”:{

            },
            “objectId”:3
         },
         {
            “url”:”/4”,
            “attributes”:{
	

            },
            “objectId”:4
         },
         {
            “url”:”/5”,
            “attributes”:{

            },
            “objectId”:5
         },
         {
            “url”:”/3201/0”,
            “attributes”:{

            },
            “objectId”:3201,
            “objectInstanceId”:0
         },
         {
            “url”:”/3201/1”,
            “attributes”:{

            },
            “objectId”:3201,
            “objectInstanceId”:1
         }
      ]
   }
]

List connected clients: GET /api/rest/

Query

GET /api/rest

Result

Synchronous RESTFul API Examples

Homard RESTFul API Examples



7

SMART SPOT

{
   “endpoint”:”HOP-Sensor-Debug”,
   “registrationId”:”MTKt5ejSeu”,
   “registrationDate”:”2015-02-16T01:06:27+01:00”,
   “address”:”/127.0.0.1:54604”,
   “lwM2MmVersion”:”1.0”,
   “lifetime”:120,
   “bindingMode”:”UQ”,
   “rootPath”:”/”,
   “objectLinks”:[
      {
         “url”:”/1/0”,
         “attributes”:{

         },
         “objectId”:1,
         “objectInstanceId”:0
      },
      {
         “url”:”/3”,
         “attributes”:{

         },
         “objectId”:3
      },
      {
         “url”:”/4”,
         “attributes”:{

         },

         “objectId”:4
      },
      {
         “url”:”/5”,
         “attributes”:{

         },
         “objectId”:5
      },
      {
         “url”:”/3201/0”,
         “attributes”:{

         },
         “objectId”:3201,
         “objectInstanceId”:0
      },
      {
         “url”:”/3201/1”,
         “attributes”:{

         },
         “objectId”:3201,
         “objectInstanceId”:1
      }
   ]
}

Get specific client: GET /api/rest/{endpoint_id}

Query

GET /api/rest/HOP-Sensor-Debug

Result



DEVELOPMENT GUIDE

8

[
    {
        “client”: “HOPf4b85eab962b”,
        “path”:
        {
            “objectId”: 3303,
            “objectInstanceId”: 0,
            “resourceId”: 5700
        },
        “ocos”:
        [
            {
                “url”: “homard.hopu.eu:8090/co”,
                “protocol”: “https://”,
                “threshold”: 0,
                “condition”: “>=”,
                “method”: “POST”,
                “oneShot”: false,
                “outputFormat”:
                [
                    {
                        “field”: “sensor”,
                        “value”: “$eID”
                    },

                    {
                        “field”: “value”,
                        “value”: “$value”
                    },
                    {
                        “field”: “r”,
                        “value”: “$resource”
                    },
                    {
                        “field”: “threshold”,
                        “value”: “$threshold”
                    }
                ],
                “id”: 1,
                “type”: 0,
                “endpoint”: “HOPf4b85eab962b”,
                “path”: “/3303/0/5700”
            }
        ]
    }
]

Get client observes: GET /api/rest/{endpoint_id}/co

Remove client observe: DELETE /api/rest/{endpoint_id}/{resource_path}/observe

Query

GET /api/rest/UBI8086f2759cbb/observes

Query

DELETE /api/rest/HOPf4b85eab9b03/3303/0/5700/observe

Result

HTTP Response 200 OK

Result



9

SMART SPOT

GET parameters:
•	 proto (mandatory): Determines the protocol to use 

(HTTP or HTTPS).
•	 cburl (mandatory): Determines the response 

destination url. 

PUT parameters: proto (mandatory), cburl (mandatory), cbauthusr (optative), cbauthpass (optative).

•	 cbauthusr (optional): Used if the destination server 
requires Basic authentication.

•	 cbauthpass (optional): Used if the destination server 
requires Basic authentication.

Read device resource: GET /api/rest/{endpoint_id}/{resource}

Write device resource: PUT /api/rest/{endpoint_id}/{resource}

Read Device Resource Query

GET /api/rest/HOPf4b85eab9b03/1/0/5?proto=https&cburl=homard.hopu.eu:8090/co

Write Device Resource Query

PUT /api/rest/HOPf4b85eab9b03/1/0/5?proto=https&cburl=homard.hopu.eu:8090/co

Post Result on Callback Url

{“eid”:”HOPf4b85eab98de”,”url”:”/1/0/5”,”oID”:1,”iID”:0,”rID”:5,”type”:”INTEGER”,”value”:1}

Post Result on Callback Url

{“eid”:”HOPf4b85eab98de”,”url”:”/1/0/5”,”oID”:1,”iID”:0, 
”rID”:5,”type”:”INTEGER”,”value”:1}

Required Payload (Data to write)

{
    “id”: 5,
    “value”: 2
}

Post Error on Callback Url

{“eid”:”HOPf4b85eab98de”, “operation”:”read”, “resource”:”/1/0/5”, “status”:”ERROR”}

Post Error on Callback Url

{“eid”:”HOPf4b85eab98de”, “operation”:”write”, 
“resource”:”/1/0/5”, “status”:”ERROR”}

Asynchronous RESTFul API Examples



DEVELOPMENT GUIDE

10

Observation creation requires a specific POST payload. 
This is a JSON object that contains the necessary 
parameters. The necessary data to create an observer is 
as follows:
•	 Observe resource: POST /api/rest/{endpoint_id/

{resource}/co
•	 Payload:

◊	 threshold: Threshold value
◊	 op: Operation condition (<=, >=, ...)
◊	 typeShot: Type shot could be “repeat” or “oneshot”

{
  “$schema”: “http://json-schema.org/draft-04/
schema#”,
  “id”: “http://jsonschema.net”,
  “type”: “object”,
  “properties”: {
    “threshold”: {
      “id”: “http://jsonschema.net/threshold”,
      “type”: “string”
    },
    “op”: {
      “id”: “http://jsonschema.net/op”,
      “type”: “string”
    },
    “typeShot”: {
      “id”: “http://jsonschema.net/typeShot”,
      “type”: “string”
    },
    “method”: {
      “id”: “http://jsonschema.net/method”,
      “type”: “string”
    },
    “durl”: {
      “id”: “http://jsonschema.net/durl”,
      “type”: “string”
    },
    “proto”: {
      “id”: “http://jsonschema.net/proto”,

◊	 method: The method of the request, usually POST
◊	 durl: Destination URL where the observer will send 

the notifications
◊	 proto: Protocol to use (“https://” or “http://”)
◊	 authUsr: Destination URL Basic authentication 

user (Optional)
◊	 authPass: Destination URL Basic authentication 

password (Optional) 

Also the JSON schema for this object is:

      “type”: “string”
    },
    “authUsr”: {
      “id”: “http://jsonschema.net/authUsr”,
      “type”: “string”
    },
    “authPass”: {
      “id”: “http://jsonschema.net/authPass”,
      “type”: “string”
    }
  },
  “required”: [
    “threshold”,
    “op”,
    “typeShot”,
    “method”,
    “durl”,
    “proto”
  ]
}

Asynchronous API: Observers



11

SMART SPOT

Example of request:

Create Observation

POST /api/rest/HOPf4b85eab9b3a/3303/0/5700/co

Error Notification Received on Callback Url

{“eid”:”HOPf4b85eab9b3a”, “operation”:”observe”, “resource”:”/1/0/5”, “status”:”ERROR”}

Response Received

HTTP response 200

Required Payload

{
    “threshold”: “0”,
    “op”: “>=”,
    “typeShot”:”repeat”,
    “method”: “POST”,
    “durl”:”homard.hopu.eu:8090/co”,
    “proto”:”https://”,
    “authUsr”: “”,
    “authPass”: “”
}

Notification Received on Callback Url

{“eid”:”HOPf4b85eab9b3a”,”url”:”3303/0/5700”,”oID”:3303,”iID”:0,”rID”:5700,”value”:”17.028683”}



DEVELOPMENT GUIDE

12

Observation notifications have a standard output that 
can be formatted according to user needs. To achieve 
this we must add a JSON array called “outputPacket” that 
contains the format of the notification packet. 

This array contains field/value JSON objects This 
array contains one or more objects of type field/value 
({“field”:”NameFile”, “value”:”Variable or Constant”}). The 
field “field” contains the attribute name of the notification 
final object. The field “value” represents the value of that 

We have to set the following “outputPacket”:  

{“sensor”: “HOPf4b85eab9b3a”, “value”:15.32, “uuid”: “067e6162-3b6f-4ae2-a171-2470b63dff00”}

{
	 ...,			 
	 “outputPacket”:[
        {“field”:”name”, “value”:”$eID”},
        {“field”: “value”, “value”:”$value”},
        {“field”: “uuid”, “value”:”067e6162-3b6f-4ae2-a171-2470b63dff00”}
    ]
}

attribute, It can be constant or variable. The allowed 
variable are the following:
•	 $eID: The Endpoint ID of the observed device.
•	 $resource: The OMA LwM2M resource observed.
•	 $value: The observation value received.
•	 $threshold: The observation threshold.
•	 $condition: The observation condition.

For example if we want to receive the following 
notification:

Asynchronous API: Customizing observer notification message (integrating with third 

party platform that requires a specific format)



13

SMART SPOT

The JSON schema of the complete object is:

        {
          “id”: “http://jsonschema.net/outputPacket/0”,
          “type”: “object”,
          “properties”: {
            “field”: {
              “id”: “http://jsonschema.net/outputPacket/0/field”,
              “type”: “string”
            },
            “value”: {
              “id”: “http://jsonschema.net/outputPacket/0/value”,
              “type”: “string”
            }
          }
        },
        {
          “id”: “http://jsonschema.net/outputPacket/1”,
          “type”: “object”,
          “properties”: {
            “field”: {
              “id”: “http://jsonschema.net/outputPacket/1/field”,
              “type”: “string”
            },
            “value”: {
              “id”: “http://jsonschema.net/outputPacket/1/value”,
              “type”: “string”
            }
          }
        }
      ]
    }
  },
  “required”: [
    “threshold”,
    “op”,
    “typeShot”,
    “method”,
    “durl”,
    “proto”
  ]
}

{
  “$schema”: “http://json-schema.org/draft-04/schema#”,
  “id”: “http://jsonschema.net”,
  “type”: “object”,
  “properties”: {
    “threshold”: {
      “id”: “http://jsonschema.net/threshold”,
      “type”: “string”
    },
    “op”: {
      “id”: “http://jsonschema.net/op”,
      “type”: “string”
    },
    “typeShot”: {
      “id”: “http://jsonschema.net/typeShot”,
      “type”: “string”
    },
    “method”: {
      “id”: “http://jsonschema.net/method”,
      “type”: “string”
    },
    “durl”: {
      “id”: “http://jsonschema.net/durl”,
      “type”: “string”
    },
    “proto”: {
      “id”: “http://jsonschema.net/proto”,
      “type”: “string”
    },
    “authUsr”: {
      “id”: “http://jsonschema.net/authUsr”,
      “type”: “string”
    },
    “authPass”: {
      “id”: “http://jsonschema.net/authPass”,
      “type”: “string”
    },
    “outputPacket”: {
      “id”: “http://jsonschema.net/outputPacket”,
      “type”: “array”,
      “items”: [



DEVELOPMENT GUIDE

14

Example of request:

Create Observation

POST /api/rest/HOPf4b85eab9b3a/3303/0/5700/observe

Response Received

HTTP response 200

Required Payload

{
    “threshold”: “0”,
    “op”: “>=”,
    “typeShot”:”repeat”,
    “method”: “POST”,
    “durl”:”homard.hopu.eu:8090/co”,
    “proto”:”https://”,
    “authUsr”: “”,
    “authPass”: “”,
    “outputPacket”:[
        {“field”:”name”, “value”:”$eID”},
        {“field”: “value”, “value”:”$value”}
    ]    
}

Notification Received on Callback Url

{“name”:”HOPf4b85eab9b03”,”value”:17.028683}



15

SMART SPOT

URL Manager (Physical Web configuration for advertising URLs)

Device URL Manager is the key component of the 
Industrial Physical Web solution offered to provide 
accessible and intuitive user interfaces. In details, the 
Device URL manager is used to administer the URL 
broadcasted / transmitted by the devices; this URL can be 
issued by BLE or Wi-Fi direct and must be coded with the 
Eddystone URL protocol1 from Google.

Nowadays, there is more than 3 million Apps hosted 
on Google Play, most of them are used  a few times 
for their temporal or location context and later they 
are forgotten wasting resources on mobile devices or 
at best cases uninstalled. Google wants to solve this 
problem through Physical Web, this technology will 
allows service providers to interact with users depending 
on the location, temporality context or directly with the 
objects surrounding the user without the need of install 
any application on any device, These applications will be 
developed as progressive webs and they will allow  user 
to feel that they are interacting with the real world through 
native applications, these applications are capable of 
interacting directly with mobile device hardware or even 
receiving notifications.

HOP Ubiquitous is a partner from Google for physical 
Web, and a service for the creation of secure and 
validated URLs is available in HPOI.info. Contact HOP 
Ubiquitous team for more details.

Physical Web creates a communication channel 
that connects the physical and virtual worlds using 
the Bluetooth Low Energy connection to send “push” 
notifications to nearby Smartphones that are in their 
range of action. This connection does not need any 
tracker native app, only with Google Chrome installed and 
with bluetooth switched on every user can interact with 
digital content directly in this physical point.

Thanks to technologies such as physical web and the 
Device URL Manager, Smart Spot is able to broadcast 
a URL with temporal and spatial context that will send 

to people around the Smart Spot for use cases such 
as tourism, infortainment, accesibility, marketing, make 
visible content or Webs available linked to a Physical 
place, etc

Device URL Manager provides an Open Source Core2 for 
users to be able to develop their own solutions which is 
accessible through an API REST, which is developed in 
python using Open Source frameworks such as Django 
and Django REST Framework that provides to the 
developers an ecosystem that allows an easy extension 
of the system for introducing layers of security or 
registration of devices.

Security

Identity Management

API REST

Web Interface

Device Register

Device URL 
Manager Core

HOP Security
Interface

Object Security
Server

Core

User interface

1. Eddystone Protocol: https://developers.google.com/beacons/eddystone
2. URL Manager: https://github.com/HOP-Ubiquitous/DeviceUrlManager



DEVELOPMENT GUIDE

16

URL Manager RESTFul API

This tool is used for manage the physical web URL of any 
device by software.

Smart PhoneS detect the Eddystone URL advertisement 
with a fixed device url that point to the Device URL 

•	 Fixed device url (Request): https://hpoi.info/
AA00BB11DD22

•	 Device Url Manager external device url (Response): 
https://google.es

•	 MAC address: is a normal mac without the two 
dots. E.g: mac: 00:11:22:33:44:55 > shortened mac: 
001122334455

Manager, then the Device URL Manager will redirect the 
request to the real uRL.

More information in the repository: https://github.com/
HOP-Ubiquitous/DeviceUrlManager

URL Manager RESTFul API Examples

URL Method URL Params Data Params Description

/api/v1/devices POST None
Type: application/json 
body: { “mac”: “001122334455”, 
“external_url”: “https://google.es/” }

Method to add a device with its 
MAC and a target URL 

Create device

Success Response

Code: 201 (Created)
Content: { “mac”: “001122334455”, “external_url”: 
“https://google.es/” }

Error Response

Code: 400 (Bad Request) 
Content: { “bad_field_name”: [error causes] }

Sample Call

$.ajax({
  url: “/api/v1/devices”,
  dataType: “json”,
  data: { “mac”: “001122334455”, “external_url”: “https://google.es/” },
  type : “POST”,
  success : function(r) {
    console.log(r);
  }
});



17

SMART SPOT

URL Method URL Params Data Params Description

/api/v1/devices/ 
:shortened_mac GET shortened_

mac=[String] None Method to show the device 
information

Show Device Data

Success Response

Code: 200 (Ok)
Content: { “mac”: “001122334455”, “external_url”: “https://google.es/” }

Error Response

Code: 404 (Not Found) 
Content: { “detail”: “Device Not Found” }

Sample Call

$.ajax({
  url: “/api/v1/devices/001122334455”,
  dataType: “json”,
  type : “GET”,
  success : function(r) {
    console.log(r);
  }
});



DEVELOPMENT GUIDE

18

URL Method URL Params Data Params  Description

/api/v1/devices/ 
:shortened_mac PUT None

Type: application/json 
body: { “mac”: “001122334455”, 
“external_url”: “https://google.es/” }

Method to update the device 
information

Update Device Data

Success Response

Code: 200 (Ok)
Content: { “mac”: “001122334455”, “external_url”: “https://google.es/” }

Error Response

Code: 404 (Not Found) 
Content: { “detail”: “Device Not Found” }

Sample Call

$.ajax({
    url: “/api/v1/devices/001122334455”,
    dataType: “json”,
    data: { “external_url”: “https://google.es/” },
    type : “PUT”,
    success : function(r) {
      console.log(r);
    }
  });



19

SMART SPOT

FIWARE Integration

FIWARE (www.fiware.org) in an open platform promoted 
by the European Commision and maintained by the 
FIWARE Foundation, where HOP Ubiquitous is Gold 
Member.

FIWARE offers an Open Ecosystem that join different 
technology enablers for scalable data mangement and 
make feasible to integrate different services and Internet 
of Things devices into a common and interoperable 
framework based on Open Standards. In particular, 
FIWARE is based on Open Standards such as OMA 
NGSI for the Services Interface and ETSI ISG CIM for the 
data models. HOP Ubiquitous is an active member and 
contributor in ETSI ISG CIM and also an active contributor 
in OMA; being one of pioneer and main companies 
working around OMA LwM2M protocol.

In details, FIWARE has a strong role in the Smart Cities 
market, since the is key to the growth and functionality 
of Smart Cities, for this reason we are committed to 
initiatives such as Open and Agile Smart Cities (OASC) 
association with over 100 cities enrolled and FIWARE 
technology as the basis for making it feasible.

Smart Spot is a FIWARE-ready device, it means that 
Smart Spot has been validated, passed a set of tests, 
participated in plugfests and the most important is 
supporting the APIs, FIWARE data models based on ETSI 
ISG CIM and it is fully interoperable and integrated with 
key components from FIWARE such as Orion Context 
Broker.

In details, Orion Context Broker is the core of FIWARE 
platform; since it enables the common integration of 
heterogenous data sources into a common component, 
which enables the capacity to carry out advanced queries, 
cross data among heterogenous domains (e.g., noise 
with crowd, weather and mobility, etc.), and finally it can 
exports data to several data analytics components such 
as Hadoop / COSMOS (Big Data), SHT (Time Series), 
CKAN (Open Data), MongoDB (Non-structured data), etc.

FIWARE and the solutions from HOP Ubiquitous are 
contributing to the creation of adapted and standardized 
solutions to satisfy the described process from the co-
creation and citizens engagement to the deployment of 
solutions based on IoT to reach the digitalization and 
enhancement of different areas in the city.

Thanks to the LwM2M Bootstrap Server deployed and 
integrated in the Homard platform, it is really easy to 
setup the server configuration for a the device. In this 
way, anyone can deploy its own LwM2M IOTAgent with a 
public server IP and configure the device to integrate it in 
FIWARE.

A tutorial about Orion Context Broker has been 
developed by FIWARE and HOP Ubiquitous, which can be 
downloaded in: http://goo.gl/o1KXcT



DEVELOPMENT GUIDE

20

Orion Context Broker

Cygnus FIWARE architecture

In The architecture, a service for context and information storage, sharing and consumption is needed, in the FIWARE 
Architecture this is the Orion Context Broker. This service is the one in charge to connect with the OMA LwM2M IOT 
Agent in order to collect data coming from the IOT devices. One of the most important features of the Context Broker 
is that it allows to model and gain access to context information in a way that is independent from the source of that 
information. It uses a non-relational database (Mongodb) to store all the data, and counts with an easy to use REST API 
with makes data accessible.

This is the FIWARE Service in charge of persisting data. It 
is based on Apache Flume, Cygnus offers as a data bus 
the interconnection with several data sources and data 
platforms such as Hadoop, CKAN, STH Comet etc.

Taking the previous two components into account the 
FIWARE IoT platform is composed, in the following lines 
the deployment of every service and the integration with 
the HOP Ubiquitous Smart Spot is described.

OMA LwM2M IoT Agent

OMA LwM2M is a device management protocol created 
by the Open Mobile alliance (OMA) which allows the 
remote manipulation of Internet of Things constrained 
devices. This complete protocol defines the procedures 
for provisioning, commissioning and management of a 
device through the definition of the resources exposed by 
the device.

The functionality of LwM2M protocol is carried out 
through a set of basic objects such as “Server”, “Security”, 
“Device”, “Statistics”... but there are also more specific 
objects defined by the IPSO Alliance which aims to 
cover the need common definitions for sensors such as 
temperature, humidity, presence, etc. Or actuators such as 
power/light/load control, buzzers, etc.

CoAP (Constrained Application Protocol) defines the 
message header, request/response codes, message 
options and retransmission mechanisms, this protocol 
together with UDP is used by LwM2M as a transport 
mechanism.

There are a large variety of topologies on the IoT but they 
have three common parts; devices, routers and backends. 

In some scenarios, routers are transparent for the end-
devices such as cellular technologies, examples are: 
GSM, SigFox, NarrowBand IoT or Wi-Fi Hallow, since they 
are already deployed by Telco’s. Others, such as Wi-Fi, 
Bluetooth, 6LoWPAN and Z-Wave are provided individually 
with the devices. In HOP Ubiquitous our technology is 
mainly based on GSM and Bluetooth 4.0.

The FIWARE Foundation counts with its own set of 
services for the IOT. One of this kind of services is called 
FIWARE IOT Agent, and we can find one that is fully 
compatible with our device architecture and connection 
protocols. HOP Ubiquitous in collaboration with ATOS and 
Telefonica are maintaining the integration of OMA LwM2M 
protocol with FIWARE via the Orion Context Broker. It is 
fully Open Source (URL al IoT Agent de HOPU en GitHub), 
and it counts with a simple deployment over FIWARE and 
Linux-based platforms. 

In addition, HOP Ubiquitous offers containers and Cloud-
enabled services with the integration of FIWARE and 
Orion Context Broker (including OMA LwM2M IoT Agent). 
Contact HOP Ubiquitous support team for more details.



21

SMART SPOT

Deployment and integration with FIWARE

• Prepare The orion context broker infrastructure:
1. Launch a mongoDB instance for the IoTAgent 

with external port 1026.
2. Launch a ORION Context Broker instance.

Docker makes really simple the previous steps.

• Make sure that the Smart Spot knows where is the 
IoTAgent to connect with:
1. Notify The Smart Spot about the IOTAgent IP with 

the bootstrap procedure.

• Rock & Roll:
1. Change directory (cd) to the IOTAgent one and 

execute ./bin/lwm2mAgent.js
2. Turn on the Smart Spot

Orion Context Broker

IoT Agent

Subscription Cygnus

Cygnus

STH Comet

Store Device Mapping

Store Raw Data

Notify with data received

Sends event based on subscription

NGSI Interface

OMA LwM2M

Store Subscriptions

Store Aggregated Data

A previous setting up is needed before things can be 
switched on, taking into account the following steps. We 
will assume that the user has a basic knowledge about 
DOCKER and LINUX CMD.

• Get and confi gure the Hopu modifi ed FiWARE 
IOTAgent:
1. git clone https://github.com/HOP-Ubiquitous/

lightweightm2m-iotagent/tree/hopu
2. change the fi le content for confi	g.js, 

omaRegistry.json and omaInverseRegistry.
json in order to set up our device confi guration to 
connect with.

3. execute: npm install
4. Launch a mongoDB instance for the IOTAgent 

with external port 7900.



DEVELOPMENT GUIDE

22

Orion Context Broker NGSI RESTFul API

Orion is a C++ implementation of the NGSIv2 REST API 
binding developed as a part of the FIWARE platform.

Orion Context Broker allows you to manage the entire 
lifecycle of context information including updates, queries, 
registrations and subscriptions. It is an NGSIv2 server 
implementation to manage context information and its 

availability. Using the Orion Context Broker, you are able 
to create context elements and manage them through 
updates and queries. In addition, you can subscribe to 
context information so when some condition occurs 
(e.g. the context elements have changed) you receive a 
notification. These usage scenarios and the Orion Context 
Broker features are described in this documentation.

Return

Returns an error message, if already exists an entity in the service with the same id.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v2/entities POST

Url: Link to the service that will be 
consulted.
Port-orion: Port to connect with the 
service.

Method to put an entity in 
a service. 

Body

{
 id:”Entity ID”,
 type:”Entity type”,
 “attributeID0”: {

value:”Attribute value”,
type:”Attribute type”
},

 “attributeID1”: {
value:”Attribute value”,
type:”Attribute type”
},...

}

Example of Body

{
 id:”Room7”,
 type:”Room”,
 “temperature”: {

value: 23,
type: ”Float”
},

 “preassure”: {
value: 720,
type: ”Integer”
},...

}

Create entity v2



23

SMART SPOT

Return

If the search has been successful then it returns the information else it returns an message error.

Return

If the search has been successful then it returns the information of compressed way else returns an error message.

Return

All entities of the service and for each entity shows their information

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v2/
entities/{{fiware-entity}} GET

Url: Link to the service that will be consulted.
Port-orion: port to connect with the service.
Fiware-entity: ID of the entity which will be 
retrieved from the service.

Method to retrieve an 
entity of a service.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v2/entities/{{fiware-
entity}}?options=keyValues

GET

Url: Link to the service that will be consulted.
Port-orion: Port to connect with the service.
Fiware-entity: ID of the entity which will be 
retrieved from the service.

Method to obtain an entity 
of a service.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v2/
entities?limit=50 GET 

Url: Link to the service that will be consulted.
Port-orion: Port to connect with the service.

Method to retrieve all 
entities.

Retrieve entity v2

Retrieve entity as data model v2

Retrieve entities v2



DEVELOPMENT GUIDE

24

Return

All entities of the service and for each entity shows their information of compressed way.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v2/entities/
{{fiware-entity}}/attrs PATCH

Url: Link to the service that will be 
consulted.
Port-orion: Port to connect with the 
service.
Fiware-entity: id of the entity where 
their attributes will be updated.

Method to update some 
attributes of the entity.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v2/ entities?options= 
keyValues&limit=50

GET
Url: Link to the service that will be consulted.
Port-orion: port to connect with the service.

Method to retrieve all 
entities of a service.

Body

{
 “attributeID”:{

value:”Attribute value”,
type:”Attribute type”
}

}

Example of Body

{
 “temperature”: {

 “value”: 26.5,
 “type”: “Float”
},

 “pressure”: {
 “value”: 763,
 “type”: “Float”
}

}

Update entity v2

Retrieve entities as data model v2



25

SMART SPOT

Return

If the search has been successful then the attribute is retrieved and shows their information else an error message is 
returned

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v2/
entities/{{fiware-entity}} DELETE

Url: Link to the service that will be consulted.
Port-orion: Port to connect with the service.
Fiware-entity: ID of the entity which will be 
deleted.

Method to delete an entity 
of a service.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v2/entities/{{fiware-entity}}/
attrs/

POST

Url: Link to the service that will be consulted.
Port-orion: Port to connect with the service.
Fiware-entity: ID of the entity which will 
have new attributes.

Method to add a new 
attribute to the entity.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v2/entities/{{fiware-entity}}/
attrs/{{fiware-attr}}

GET 

Url: Link to the service that will be consulted.
Port-orion: Port to connect with the service.
Fiware-entity: ID of the entity where is the 
attribute.
Fiware-attr: ID of the attribute.

Method to retrieve an 
attribute of an entity.

Body

{
 “attributeID”:{

value:”Attribute value”,
type:”Attribute type”
}

}

Example of Body

{
 “temperature”: {

 “value”: 26.5,
 “type”: “Float”
},

}

Delete entity v2

Create attribute for entity v2

Retrieve entity attribute v2



DEVELOPMENT GUIDE

26

Return

If the search has been successful then type is retrieved and shows all their information, else an error message is 
returned

Return

If the search has been successful then the attribute is retrieved and shows their information, else it returns a message 
error.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v2/entities/
{{fiware-entity}}/attrs/{{fiware-attr}} DELETE

Url: Link to the service that will be 
consulted.
Port-orion: Port to connect with the 
service.
Fiware-entity: ID of the entity which 
will delete attributes.
Fiware-attr: ID of the attribute which 
will delete.

Method to delete an 
attribute of an entity.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v2/
types/{{fiware-service}} GET

Url: Link to the service that will be consulted.
Port-orion: Port to connect with the service.
Fiware-service: ID of type of the entity which 
will be searched in the service.

Method to retrieve an 
entity type of the service.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v2/entities/{{fiware-
entity}}?options=keyValues

GET 

Url: Link to the service that will be consulted.
Port-orion: Port to connect with the service.
Fiware-entity: ID of the entity where is the 
attribute.
Fiware-attr: ID of the attribute.

Method to retrieve an 
attribute of an entity.

Delete attribute for entity v2

Retrieve type v2

Retrieve entity attribute as data model v2



27

SMART SPOT

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v2/
types GET

Url: Link to the service that will be consulted.
Port-orion: port to connect with the service.

The different entity types 
in the service and their 
information.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v2/
subscriptions POST

Url: Link to the service that will be consulted.
Port-orion: Port to connect with the service.

Method to create a 
subscription to one or 
many entities

Body

Retrieve types v2

Create subscription v2

}
},
“notification”: {

“http”: {
“url”: “http://localhost:1028/accumulate”

},
“attrs”: [

“temperature”
]

},
“expires”: “2040-01-01T14:00:00.00Z”,
“throttling”: “5”

}

{
“description”: “Definition of the subscription”,
“subject”: {

“entinties”: [
{
“id”: “Room1”
“type: “Room”
}

],
“condition”: {

“attrs”: [
“pressure”

]

•	 Condition: It defines the “trigger” for the subscription.
•	 Url: URL where to send notifications
•	 Throttling: It is used to specify a minimum inter-notification 

arrival time.
•	 Notification.attr: Attributes which you will received in a 

notification when “condition.attr” changes.



DEVELOPMENT GUIDE

28

Return

All existing subscriptions of the service and for each subscription show their information.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v2/subscriptions/{{fiware-
subscription}}

DELETE

Url: Link to the service that will be consulted
Port-orion: Port to connect with the service.
Fiware-subscription: ID of the subscription 
will be deleted.

Method to delete a 
subscription of a service

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v2/
subscriptions GET 

Url: Link to the service that will be consulted.
Port-orion: Port to connect with the service.

Method to retrieve all 
subscriptions of a service.

Remove subscription v2

Retrieve subcriptions v2



29

SMART SPOT

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
registry/registerContext POST 

Url: Link to the service that will be consulted.
Port-orion: Port to connect with the service.

Method to create a context 
of entity, an entity without 
values.

Create context entity v1

Body

Return

“name”: “nombre_atributo”,
“type”: “attribute_type”,
“isDomain”: “false”

}
],
“providingApplication”: “http://homard.hopu.
eu:1026/v2/entities”

}
],
“duration”: “P1M”

}

{
“contextRegistrations”: [

{
“entities”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id”

}
],
“attributes”: [

{

Returns a confirmation that the item has been created correctly

{
“duration”: “P1M”,
“registrationId”: “5a79812d777fc523840b8446”

}

•	 isPattern: Nowadays, it is not being used. Threfore, value is 
always “false”.

•	 isDomain: The attribute domains aren’t supported. Always 
‘false’.

•	 providingApplication: The URL that represents the context 
information of the registered entities and attributes.

•	 duration: The duration of the element. In ISO 8601 standard 
format.



DEVELOPMENT GUIDE

30

URL Method URL Params Definition

http://{{url}}:{{port-
orion}}/v1/registry/
discoverContextAvailability

POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method to retrieve a context of entity, 
an entity without values, depends on 
ID and type.

Retrieve context entity v1

Body Return

{
“entities”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id”

}
]

}

In case of finding this element, it returns the information.
In case of not finding this element, it returns a 404 error “No 
context element found”.

•	 isPattern: Nowadays, it is not being used. Threfore, value is 
always “false”.



31

SMART SPOT

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
updateContext POST 

Url: Link to the service that will be consulted.
Port-orion: Port to connect with the service.

Method to create or update 
an entity, depends on 
method’s body.

Create/update entity v1

Body (creation) Body (updating)

Return

{
“contextElements”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id “,
“attributes”: [

{
“name”:”attribute_id “,
“type”: “attribute_type”,
“value”: “attribute_value”
}

]
}

],
“updateAction”: “APPEND”

}

{
“contextElements”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id “,
“attributes”: [

{
“name”:”attribute_id”,
“type”: “attribute_type”,
“value”: “attribute_value”
}

]
}

],
“updateAction”: “UPDATE”

}

In case of performing the method correctly, it return 200 OK together with the information of the entity.
In UPDATE, in case of not find that entity, it return a 404 ERROR “No context element found”.

•	 isPattern: Nowadays, it is not being used. Threfore, value is always “false”.
•	 updateAction: Action to be carried out (“APPEND” or “UPDATE”). In case of “APPEND” creates the entity, if else “UPDATE” 

updatdes the entity



DEVELOPMENT GUIDE

32

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v1/contextEntities/{{fiware-
entity}}

POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-entity: ID of the entity 
that will be create of the service.

Method to create a new entity

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v1/contextEntities/{{fiware-
entity}}

GET 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-entity: ID of the entity 
that will be create of the service.

Method that return a defined entity 
passed as parameter.

Create entity v1

Retrieve entity standard v1

Body Return

Return 

{
“type”: “entity_type”,
“attributes”: [

{
“name”: “attribute_id”,
“type”: “attribute_type”,
“value”: “attribute_value”

}
]

}

In case of performing the method correctly, it return 200 OK 
together with the information of the new entity.

In case of performing the method correctly, it return 200 OK together with the information of the entity.
In case of not find that entity, it return a 404 ERROR “No context element found”.



33

SMART SPOT

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
queryContext POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method that returns a defined entity 
passed in the body of the method.

URL Method URL Params Definition

http://{{url}}:{{port-
orion}}/v1/registry/
contextEntities/{{fiware-
type}}?attributeFormat 
=object

GET 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-entity: ID of the entity 
that will be create of the service.

Method that return a defined entity 
with object JSON format.

Retrieve entity convenience v1

Retrieve entity as object standard v1

Body Return

Return 

{
“entities”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id”

}
]

}

In case of performing the method correctly, it returns 200 OK 
together with the information of the entity.
In UPDATE, in case of not finding that entity, it returns a 404 
ERROR “No context element found”.

In case of performing the method correctly, it returns 200 OK together with the information of the entity with object JSON format.
In case of not find that entity, it return a 404 ERROR “No context element found”.



DEVELOPMENT GUIDE

34

URL Method URL Params Definition

http://{{url}}:{{port-
orion}}/v1/queryContext? 
attributeFormat=object

POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method that return a defined entity 
with object JSON format. The entity ID 
is passed in the body of method.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
contextEntities GET 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method that return all entities.

Retrieve entity as object convenience v1

Retrieve entities v1

Body Return

Return 

{
“entities”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id”

}
]

}

In case of performing the method correctly, it returns 200 OK 
together with the information of the entity with object JSON 
format.
In UPDATE, in case of not finding that entity, it returns a 404 
ERROR “No context element found”.

Show all existing entities.



35

SMART SPOT

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v1/cont extEntities? 
attributeFormat=object

GET 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method that return all entities with 
object JSON format.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
registry/contextEntityTypes/
{{fiware-type}}

GET 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-type: Type of entities that 
we want to receive.

Method that returns all entities of a 
concrete type.

Retrieve entities for type v1

Retrieve entities as object v1

Return 

Return 

Show all existing entities with object JSON format.

In case of performing the method correctly, it returns 200 OK together with the information of the all entities of this type.
In UPDATE, in case of not finding that entity, it returns a 404 ERROR “No context element found”.



DEVELOPMENT GUIDE

36

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
registry/contextEntityTypes/
{{fiware-type}} 
?attributeFormat=object

GET 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-type: Type of entities that 
we want to receive.

Method that return all entities of 
a concrete type with object JSON 
format.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v1/contextEntities/{{fiware-
entity}}

DELETE 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-entity: ID of the entity we 
want to delete.

Method to delete a defined entity.

Retrieve entities for type as object v1

Delete entity v1

Return 

Return 

In case of performing the method correctly and delete the entity defined, it returns 200 OK .
In case of not finding that entity, it returns a 404 ERROR “No context element found”.

In case of performing the method correctly, it returns 200 OK together with the information of the all entities of this type with object 
JSON format.
In UPDATE, in case of not finding that entity, it returns a 404 ERROR “No context element found”.



37

SMART SPOT

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v1/contextEntities/{{fiware-
entity}}/attributes

POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-entity: ID of the entity 
that will be created of the 
service.

Method to update the values of one 
or many attributes of an entity passed 
as parameter. In addition, this method 
can create new attributes for an entity.

Create/update entity attribute v1

Return 

In case of performing the method correctly, it returns 200 OK together with the information of the entity updating.
In case of not finding that entity, it returns a 404 ERROR “No context element found”.

Body (creation) Body (updating)

Create a new attribute. We transmit a new attribute in the body:

{
“attributes”: [

{
“name”: “attribute_id”,
“type”: “attribute_type”,
“value”: “attribute_value”
}

]
}

Update an attribute. We transmit an existing/available attribute 
with a new value.

{
“attributes”: [

{
“name”: “attribute_id_nuevo”,
“type”: “attribute_type_nuevo”,
“value”: “attribute_value_nuevo”
}

]
}



DEVELOPMENT GUIDE

38

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v1/contextEntities/{{fiware-
entity}}/attributes/{{fiware-
attr}}

GET 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-entity: ID of the entity 
that will be retrieved of the 
service.
Fiware-attr: Attribute ID we want 
to receive.

Method that retrieves the defined 
attribute depending on the ID of a 
specific entity.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v1/contextEntities/{{fiware-
entity}}/attributes/{{fiware-
attr}}?attributeFormat=object

GET 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-entity: ID of the entity 
that will be retrieved of the 
service.
Fiware-attr: Attribute ID we want 
to receive.

Method that retrieves the defined 
attribute depending on the ID of a 
specific entity with object JSON 
format.

Retrieve entity attribute v1

Delete entity attribute as object v1

Return 

Return 

In case of performing the method correctly, it returns 200 OK together the attribute value defined by its ID for a specific entity with 
object JSON format.
In case of not finding that entity or attribute, it returns 404 ERROR “No context element found”.

In case of performing the method correctly, it returns 200 OK together the attribute value defining by its ID for a specific entity.
In case of not finding that entity or attribute, it returns 404 ERROR “No context element found”.
In UPDATE, in case of not finding that entity, it returns a 404 ERROR “No context element found”.



39

SMART SPOT

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
registry/contextEntityTypes/
{{fiware-type}}/attributes/
{{fiware-attr}}

GET 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-type: Type of entities that 
we want to receive.
Fiware-attr: Attribute of type of 
entities that we want to receive.

Method that returns the defined 
attribute of all entities of a specific 
type.

URL Method URL Params Definition

http://{{url}}:{{port-
orion}}/v1/registry/
contextEntityTypes/{{fiware-
type}}/attributes/{{fiware-
attr}}?attributeFormat=object

GET 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-type: Type of entities that 
we want to receive.
Fiware-attr: Attribute of type of 
entities that we want to receive.

Method that returns the defined 
attribute of all entities of a specific 
type with object JSON format.

Retrieve entities attribute for type v1

Retrieve entities attribute for types as object v1

Return 

Return 

In case of performing the method correctly, it returns 200 OK together with the information of defined attributes of all entities of this 
type.
In UPDATE, in case of not finding that entity, it returns a 404 ERROR “No context element found”.

In case of performing the method correctly, it returns 200 OK together with the information of defined attributes of all entities of this 
type with object JSON format.
In UPDATE, in case of not finding that entity, it returns a 404 ERROR “No context element found”.



DEVELOPMENT GUIDE

40

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v1/contextEntities/{{fiware-
entity}}/attributes/{{fiware-
attr}}

DELETE 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-entity: ID of the entity 
that will be retrieve of the 
service.
Fiware-attr: Attribute ID we want 
to receive.

Method to delete the defined attribute 
depending on the ID of a concrete 
entity.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
contextTypes/{{fiware-type}} GET 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-type: Type of entities that 
we want to receive.

Method to receive an entity type 
concrete.

Delete entity attribute v1

Retrieve type v1

Return 

Return 

In case of performing the method correctly, it returns 200 OK together the information of this entities type.
In case of not finding that entities type, it returns 404 ERROR “No context element found”.

In case of performing the method correctly and delete the entity defined, it returns 200 OK.
In case of not finding that entity or attribute, it returns 404 ERROR “No context element found”.



41

SMART SPOT

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
contextTypes GET 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method to receive the existing entities 
types.

Retrieve types v1

Create context subscription standard v1

Return 

In case of performing the method correctly, it returns 200 OK together the information of all entities type.
In case of not finding that entities type, it returns 404 ERROR “No context element found”.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
subscribeContextAvailability POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method to create a subscription to one 
or many context entities.

Body

Return

{
“entities”: [

{
“type”: “id_entity_type”,
“isPattern”: “false”,
“id”: “.*”
}

],
“attributes”: [

“id_attribute”
],

“reference”: “http://cygnus:5050/notify”,
“duration”: “P1M”

}

{
“subscriptionId”: “subscription_id”,
“duration”: “P1M”

}

•	 isPattern: Nowadays, it is not being used. Threfore, value is 
always “false”.

•	 id: To which entity it wants to subscribe. In this case, to all 
entities of those type.

•	 reference: URL of client that it want to subscribe.
•	 duration: The duration of the subscription. In ISO 8601 

standard format..



DEVELOPMENT GUIDE

42

URL Method URL Params Definition

http://{{url}}:{{port-
orion}}/v1/context 
AvailabilitySubscriptions

POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method to create a subscription to one 
or many context entities.

Create context subscription convenience v1

Body

Return

{
“entities”: [

{
“type”: “id_entity_type”,
“isPattern”: “false”,
“id”: “.*”
}

],
“attributes”: [

“id_attribute”
],

“reference”: “http://cygnus:5050/notify”,
“duration”: “P1M”

}

{
“subscriptionId”: “subscription_id”,
“duration”: “P1M”

}

•	 isPattern: Nowadays, it is not being used. Threfore, value is 
always “false”.

•	 id: To which entity it wants to subscribe. In this case, to all 
entities of those type.

•	 reference: URL of client that it want to subscribe.
•	 duration: The duration of the subscription. In ISO 8601 

standard format..



43

SMART SPOT

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v1/updateContext 
AvailabilitySubscriptions

POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method to update a subscription of a 
context entity.

Update context subscription standard v1

Body Return

{
“entities”: [

{
“type”: “id_entity_type”,
“isPattern”: “false”,
“id”: “.*”
}

],
“duration”: “P1M”
“subscriptionId”: “subscription_id”

}

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}
}



DEVELOPMENT GUIDE

44

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v1/registry/context 
AvailabilitySubscriptions/
{{fiware-subscription}}

PUT 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-subscription: ID de la 
suscripción a actualizar.

Method to update a subscription of a 
context entity.

Update context subscription convenience v1

Body Return

{
“entities”: [

{
“type”: “id_entity_type”,
“isPattern”: “false”,
“id”: “.*”
}

],
“duration”: “P1M”
“subscriptionId”: “subscription_id”

}

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}
}



45

SMART SPOT

URL Method URL Params Definition

http://{{url}}:{{port-
orion}}/v1/context 
AvailabilitySubscriptions/
{{fiware-subscription}}

POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-subscription: ID of 
subscription to remove.

Method to delete a subscription of a 
context entity.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
unsuscribeContextAvailability POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method to delete a subscription of a 
context entity.

Delete context subscription convenience v1

Delete context subscription standard v1

Body

Return

Return

{
“subscriptionId”: “5a785788777fc523840b843e”

}

In case of performing the method correctly and delete the entity defined, it returns 200 OK together with the removed subscription ID.
In case of not finding that subscription, it returns 404 ERROR “No context element found”.

In case of performing the method correctly and delete the 
entity defined, it returns 200 OK together with the removed 
subscription ID.
In case of not finding that subscription, it returns 404 ERROR 
“No context element found”.



DEVELOPMENT GUIDE

46

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
suscribeContext POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method to create a subscription to one 
or many entities.

Create subscription standard v1

Body

Return

{
“entities”: [
{

“type”: “entity_type”,
“isPattern”: “false”,
“id”: “.*”

}
],

“attributes”: [
“attribute_id”

],
“reference”: “http://cygnus:5050/notify”,
“duration”: “P1M” 
“notifyConditions”: [ 
{

“type”: “ONCHANGE”, 
“condValues”: [

 “attribute_id” 
]

 }
 ], 
“throttling”: “PT5S”

}

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“duration”: “P1M”

}
}

•	 isPattern: Currently is hasn’t use. Always ‘false’.
•	 id: To which entity it wants to subscribe. In this case, to all 

entities of those type.
•	 reference: URL of client that it want to subscribe.
•	 duration: The duration of the subscription. In ISO 8601 

standard format.
•	 notifyConditions: Define the launcher to notify the 

subscriptions. In this case, when change a value of 
attributes transmitted via the “condValues” of an entity ,then 
it will trigger a notification.

•	 throttling: Specify a minimum inter-notification arrival time. 
In this case, 5 seconds.



47

SMART SPOT

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
contextSubscriptions POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method to create a subscription to one 
or many entities.

Create subscription convenience v1

Body

Return

{
“entities”: [
{

“type”: “entity_type”,
“isPattern”: “false”,
“id”: “.*”

}
],

“attributes”: [
“attribute_id”

],
“reference”: “http://cygnus:5050/notify”,
“duration”: “P1M” “notifyConditions”: [ 
{

“type”: “ONCHANGE”,
“condValues”: [

“attribute_id”
]

}
],
“throttling”: “PT5S”

}

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“duration”: “P1M”

}
}

•	 isPattern: Currently is hasn’t use. Always ‘false’.
•	 id: To which entity it wants to subscribe. In this case, to all 

entities of those type.
•	 reference: URL of client that it want to subscribe.
•	 duration: The duration of the subscription. In ISO 8601 

standard format.
•	 notifyConditions: Define the launcher to notify the 

subscriptions. In this case, when change a value of 
attributes transmitted via the “condValues” of an entity ,then 
it will trigger a notification.

•	 throttling: Specify a minimum inter-notification arrival time. 
In this case, 5 seconds.



DEVELOPMENT GUIDE

48

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/v1/
updateContextSubscription POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method to update a subscription of an 
entity.

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v1/contextSubscriptions/
{{fiware-subscription}}

POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.

Method to update a subscription of an 
entity.

Update subscription standard v1

Update subscription convenience v1

Body

Body

Return

Return

{
“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}

{
“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}
}

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}
}



49

SMART SPOT

URL Method URL Params Definition

http://{{url}}:{{port-orion}}/
v1/contextSubscriptions/
{{fiware-subscription}}

POST 

Url: Link to the service that will 
be consulted.
Port-orion: Port to connect with 
the service.
Fiware-subscription: ID of 
subscription to remove.

Method to delete the subscription to 
an entity.

Delete subscription v1

Return

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}
}





ANNEXES



DEVELOPMENT GUIDE

52

ANNEX 1: OMA LwM2M

OMA LightweightM2M is a device management protocol 
designed for sensor networks and the demands of a 
machine-to-machine (M2M) environment. With LwM2M, 
OMA has responded to demand in the market for a 
common standard for managing lightweight and low 
power devices on a variety of networks necessary to 
realize the potential of IoT. The LwM2M protocol, designed 
for remote management of M2M devices and related 

The LwM2M Enabler defines a simple resource model 
where each piece of information made available by the 
LwM2M Client is a Resource. Resources are organized 
into Objects, and each Resource is given a unique 
identifier within that Object.

Each Objec is assigned a unique OMA LwM2M Object 
identifier allocated and maintained by the OMA Naming 
Authority (OMNA). Further Objects may be added by OMA 
or other organizations to enable additional M2M Services.

As an Object only specifies a grouping of Resources, an 
Object must be firstly instantiated so that the LwM2M 
Client can use the Resources of such an Object and the 
associated functionalities.

When an Object is instantiated an Object Instance is 
created with a subset of the Resources defined in the 
Object specification; a LwM2M Server can then access 
that Object Instance and its set of instantiated Resources.

A Resource which is instantiated within an Object 
Instance is a Resource which can either:
•	 contain a value (if the Resource is Readable and/or 

Writeable)
•	 or can be addressed by a LwM2M Server to trigger 

an action in the LwM2M Client (if the Resource is 
Executable)

The Object specification defines the operations (Read, 

service enablement, features a modern architectural 
design based on REST, defines an extensible resource and 
data model and builds on an efficient secure data transfer 
standard called the Constrained Application Protocol 
(CoAP). LwM2M has been specified by a group of industry 
experts at the Open Mobile Alliance’s Device Management 
Working Group and is based on protocol and security 
standards from the IETF.

Write, Execute) which are individually supported by the 
Resources belonging to that Object; this specification also 
defines the Mandatory or Optional characteristics of such 
Resources.

Objects and Resources have the capability to have 
multiple instances. Multiple-Instances Resources can be 
instantiated by LwM2M Server operations in using JSON 
or TLV formats. The LwM2M Client also has the capability 
to instantiate Single or Multiple-Instances Resources.

The LwM2M Enabler defines an access control 
mechanism per Object Instance. Object Instances should 
have an associated Access Control Object Instance. An 
Access Control Object Instances contains Access Control 
Lists (ACLs) that define which operations on a given 
Object Instance are allowed for which LwM2M Server(s).

Resource model



53

SMART SPOT

Each Object definition, which may be found in the LwM2M 
specification, features the following information:

•	 Name: specifies the Object name.
•	 Object ID: specifies the Object ID.
•	 Instances: indicates whether this Object supports 

multiple Object Instances or not. If this field is 
“Multiple” then the number of Object Instance can be 

from 0 to many. If this field is “Single” then the number 
of Object Instance can be from 0 to 1.

•	 Mandatory: if this field is “Mandatory”, then the 
LwM2M Client MUST support this Object. If this field 
is “Optional”, then the LwM2M Client SHOULD support 
this Object.

•	 Object URN
•	 Resource definitions

Objects

Attributes are metadata which can be attached to an 
Object, an Object Instance or a Resource. The value of an 
Attribute is LwM2M Server specific. 

Regardless to the LwM2M entity a given Attribute is 
attached to, the value of such an Attribute can be set at 
various levels: Object, Object Instance, Resource levels.

•	 <PROPERTIES> Class Attributes: The role of these 
Attributes is to provide metadata which may 
communicate helpful information to LwM2M Server 
for example easing data management. These include:
◊	 Dimension (dim): Number of Instantiations for a 

Multiple Resource.
◊	 Object Version (ver): Provide the version of the 

associated Object.
•	 <NOTIFICATION> Class Attributes: The role of 

these R-Attributes is to provide parameters to the 
“Notify” operation; any readable Resource can have 
such Rattributes. In the message sent by a LwM2M 
Client in response to an “Observe” operation, the 
current Resource value is reported; this event can be 
considered as the initial notification. 
 
Each time a Resource notification is sent, the 
“Minimum Period” and “Maximum Period” timers 
associated to this Resource are restarted. 
 
The notification of a Resource value will be sent when 
the combination of a change value condition (“Greater 

Than”, “Less Than”, or “Step”) and the “Minimum 
Period” timing conditions are both fulfilled for that 
Resource. 
 
This behaviour can be modified using the following 
available attributes:
◊	 Minimum Period (pmin): The Minimum Period 

Attribute indicates the minimum time in seconds 
the LwM2M Client must wait between two 
notifications.

◊	 Maximum Period (pmax): The Maximum Period 
Attribute indicates the maximum time in seconds 
the LwM2M Client MAY wait between two 
notifications.

◊	 Greater Than (gt) and Less Than (lt): This 
Attributes defines a threshold high value and 
low value. When these Attributes is present, the 
LwM2M Client must notify the Server each time 
the Observed Resource value crosses these 
thresholds with respect to pmin parameter and to 
pmax parameter.

◊	 Step (st): This Attribute defines a minimum 
change value between two notifications. When 
this Attribute is present, the change value 
condition will occur when the value variation since 
the last notification of the Observed Resource, is 
greater or equal to the “Step” Attribute value.

Attributes



DEVELOPMENT GUIDE

54

The Bootstrap Interface is used to provision essential 
information into the LwM2M Client to enable the LwM2M 
Client to perform the operation “Register” with one or 
more LwM2M Servers.

During the Bootstrap Phase, the Client may ignore 
requests and flush all pending responses not related to 
the Bootstrap sequence. There are four bootstrap modes 
supported by the LwM2M Enabler:

•	 Factory Bootstrap
•	 Bootstrap from Smartcard
•	 Client Initiated Bootstrap
•	 Server Initiated Bootstrap

The last two Bootstrap modes require the help of a 
LwM2M Bootstrap-Server to achieve the ultimate goal to 
connect a LwM2M Client to their LwM2M Server(s).

The LwM2M Client must support at least one bootstrap 
mode specified in the Bootstrap Interface.

The LwM2M Bootstrap-Server must support Client 
Initiated Bootstrap and Server Initiated Bootstrap modes 
specified in the Bootstrap Interface.

Bootstrap Interface

This enabler defines the application layer communication 
protocol between a LwM2M Server and a LwM2M 
Client, which is located in a LwM2M Device. The OMA 
Lightweight M2M enabler includes device management 
and service enablement for LwM2M Devices. The target 
LwM2M Devices for this enabler are mainly resource 
constrained devices. Therefore, this enabler makes use 
of a light and compact protocol as well as an efficient 
resource data model.

A Client-Server architecture is introduced for the LwM2M 
Enabler, where the LwM2M Device acts as a LwM2M 

Client and the M2M service, platform or application acts 
as the LwM2M Server. The LwM2M Enabler has two 
components, LwM2M Server and LwM2M Client. Four 
interfaces are designed between these two components:

•	 Bootstrap
•	 Client Registration
•	 Device management and service enablement
•	 Information Reporting

Clients and servers



55

SMART SPOT

The LwM2M Server must support all the operations in this 
interface and the LwM2M Client must support “Register” 
and “Update” and should support “De-register” operation.

The Client Registration Interface is used by a LwM2M 
Client to register with one or more LwM2M Servers, 
maintain each registration and de-register from a LwM2M 
Server. The registration is based on the Resource Model 
and Identifiers defined in Section 6 Identifiers and 
Resources. When registering, the LwM2M Client performs 
the “Register” operation and provides the properties the 
LwM2M Server requires to contact the LwM2M Client 
(e.g., End Point Name); maintain the registration and 
session (e.g., Lifetime, Queue Mode) between the LwM2M 
Client and LwM2M Server as well as knowledge of the 
Objects the LwM2M Client supports and existing Object 
Instances in the LwM2M Client. The registration is soft 
state, with a lifetime indicated by the Lifetime Resource 
of that LwM2M Server Object Instance. The LwM2M 
Client periodically performs an update of its registration 
information to the registered LwM2M Server(s) by 
performing the “Update” operation– possibly without any 
parameters. If the lifetime of a registration expires without 
receiving an update from the LwM2M Client:

•	 The LwM2M Server must remove the registration of 
that Client. 

•	 The LwM2M Client must re-register (“Update” is 
not sufficient) to the LwM2M Server in order to 
be connected again, before initiating any further 
communication.

If the LwM2M Server or the LwM2M Client set a value 
to the Lifetime Resource of the Server Object Instance, 
this value becomes the new lifetime of the Registration 
session.

During “Register” or “Update” Operations, the parameter 
Lifetime – if present – must match the current value 
of the Mandatory Lifetime Resource of the LwM2M 

Server Object Instance. Finally, when shutting down or 
discontinuing use of a LwM2M Server, the LwM2M Client 
performs a “De-register” operation.

The Binding Resource of the LwM2M Server Object 
informs the LwM2M Client of the transport protocol 
preferences of the LwM2M Server for the communication 
session between the LwM2M Client and LwM2M Server. 

The LwM2M Client should perform the operations with the 
modes indicated by the Binding Resource of the LwM2M 
Server Object Instance.

Client Registration Interface



DEVELOPMENT GUIDE

56

The LwM2M Server and the LwM2M Client must support 
all the operations in this interface. 

The Device Management and Service Enable Interface
is used by the LwM2M Server to access Object Instances 
and Resources available from a registered LwM2M 
Client. The interface provides this access through the 
use of “Create”, “Read”, “Write”, “Delete”, “Execute”, “Write-
Attributes”, or “Discover” operations.

The Device Management and Service Enablement 
interface defines the following commands:

•	 Read operation is used to access the value of a 
Resource, an array of Resource Instances, an Object 
Instance or all the Object Instances of an Object. 

•	 Discover operation is used to discover LwM2M 
Attributes attached to an Object, Object Instances, 
and Resources. This operation can be used to 
discover which Resources are instantiated in a given 
Object Instance 

•	 Write operation is used to change the value of 
a Resource, the values of an array of Resources 
Instances or the values of multiple Resources from an 
Object Instance.

•	 Write-Attributes: In LwM2M 1.0, only Attributes from 
the <NOTIFICATION> class may be changed in using 
the “Write-Attributes” operation. The operation permits 
multiple Attributes to be modified within the same 
operation. 

•	 Execute operation is used by the LwM2M Server to 
initiate some action, and can only be performed on 
individual Resources. A LwM2M Client must return an 
error when the “Execute” operation is received for an 
Object Instance(s) or Resource Instance(s).  
 

•	 Create  operation is used by the LwM2M Server to 
create Object Instance(s) within the LwM2M Client. 
The “Create” operation must target an Object. If any 
error occurs, nothing must be created 

•	 Finally, the Delete operation is used for LwM2M 
Server to delete an Object Instance within the LwM2M 
Client. 
 
The Object Instance that is deleted in the LwM2M 
Client by the LwM2M Server must be an Object 
Instance that is announced by the LwM2M Client to 
the LwM2M Server using the “Register” and “Update” 
operations of the Client Registration Interface.

Device Management and Service Enablement Interface



57

SMART SPOT

The LwM2M Server and the LwM2M Client must support 
all the operations in this interface.

The Information Reporting Interface is used by a LwM2M 
Server to observe any changes in a Resource on a 
registered LwM2M Client, receiving notifications when 
new values are available. This observation relationship is 
initiated by sending an “Observe” operation to the LwM2M 
Client for an Object, an Object Instance or a Resource. An 
observation ends when a “Cancel Observation” operation 
is performed.

•	 Observe: The LwM2M Server initiates an observation 
request for changes of a specific Resource, 
Resources within an Object Instance or for all the 
Object Instances of an Object within the LwM2M 
Client. 

•	 Notify: The “Notify” operation is sent from the LwM2M 
Client to the LwM2M Server during a valid observation 
on an Object Instance or Resource. This operation 
includes the new value of the Object Instance or 
Resource. The “Notify” operation should be sent when 
all the conditions (i.e., Minimum Period, Maximum 
Period, Greater Than, Less Than, Step) configured by 
“Write-Attributes” operation for “Observe” operation 
are met 

•	 Cancel Observation: The “Cancel Observation” 
operation is sent from the LwM2M Server to the 
LwM2M Client to end an observation relationship for 
Object Instance or Resource.

More information about OMA LwM2M Protocol: 
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_1-20170704-A/OMA-TS-LightweightM2M-V1_0_1-
20170704-A.pdf

Information Reporting Interface







hopu.eu


